
1. Schnittstellen des BHKW als Belastung und Schadensquelle ausschalten

Dipl.-Ing. Michael Wentzke IG Biogasmotoren e.V.

Agenda

- 1. Fütterung (Kritische Bestandteile des Substrates)
- 2. Fermenterbelüftung (Partikelbelastung, Sauerstoffgehalt)
- 3. Länge Biogasleitung (Satelliten-Standorte: Entmischung)
- 4. Entwässerung, Nacherwärmung, Aktivkohle-Handling
- 5. Fundamentierung
- 6. Gasgebläse
- 7. Abwärmeführung (Versorgung der Wärmeabnehmer, Modifikation von Nahwärmenetzen)
- 8. Mess- und Steuerungstechnik, Sicherheitstechnik

Modellierung Biogas-BHKW

1. Fütterung (Kritische Bestandteile des Substrates)

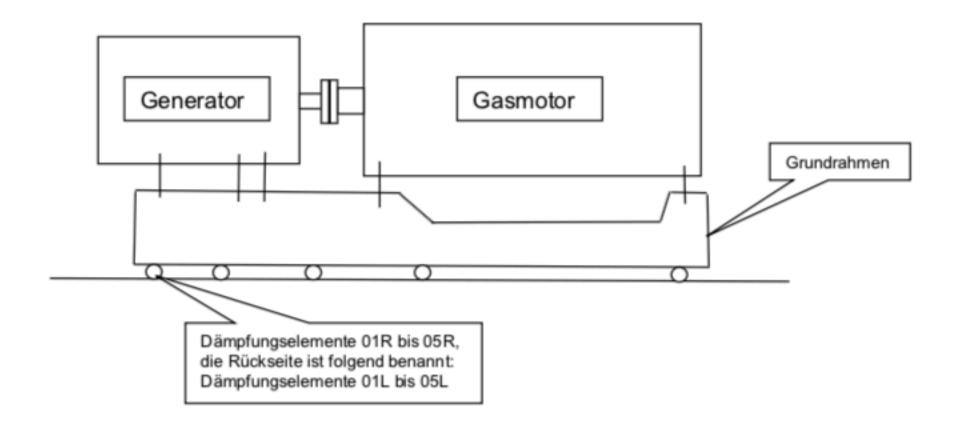
- Störstoffe : z.b. Siloxane, Ammoniak
- Sauerstoffgehalt
- Methangehalt (zu niedrig, stark schwankend, sehr hoch)
- Langkettige Kohlenwasserstoffe (Limonene, Dekane)
- Salzbildner (Fe₃Cl) mit H₂ Gefahr der Salzsäurebildung
- H₂S: Bildung von Schwefelsäure mit Gefahr für Schmieröl, Lager, Katalysator, Abgaswärmetauscher

2. Fermenterbelüftung (Partikelbelastung, Sauerstoffgehalt)

- Fermenterbelüftung: Beitrag zur Rohentschwefelung
 - Zu viel : Methanbildung gestört
 - Zu gering: Aktivkohlestandzeit zu gering
- Filterung der Fermenterbelüftung
 - Staub, Sand, Pollen etc. werden vom Biogas mitgezogen in die Gasregelstrecke

3. Länge Biogasleitung (Satelliten-Standorte: Entmischung)

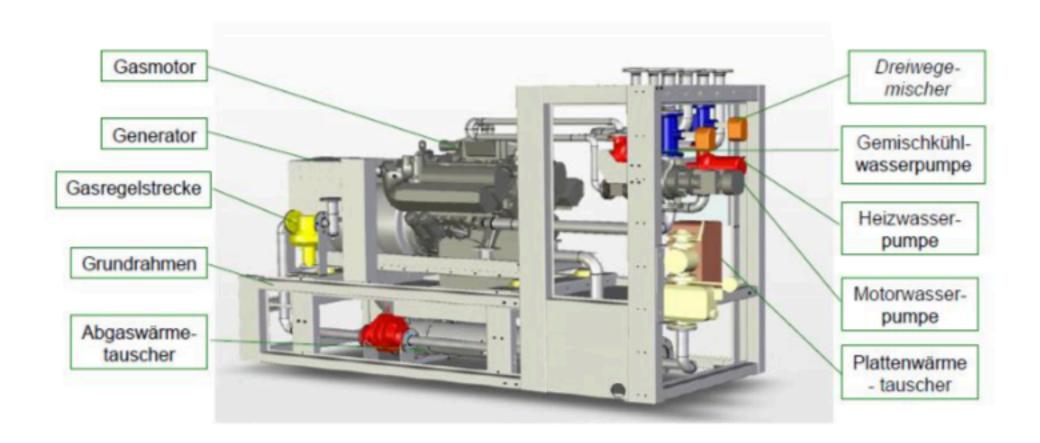
- Ruhende Gassäule: Entmischung von CO₂ und Methan
- Druckverlust in langen Biogasleitungen : Querschnitte, enge Rohrbögen, hohe Gebläseleistung für notwendigen Vordruck
- "Abzweige" zu verschiedenen BHKWs problematisch, gerade bei stark unterschiedlichen Druckvolumen: Druckstöße, ungeplante Motorstillstände bei laufenden Motoren, wenn weiterer Motor anspringt (Druckregelung, Zentralversorgung Reingasbehälter..)
- Fehlender Kondensatschacht, fehlende Entleerung


4. Entwässerung, Nacherwärmung, Aktivkohle-Handling

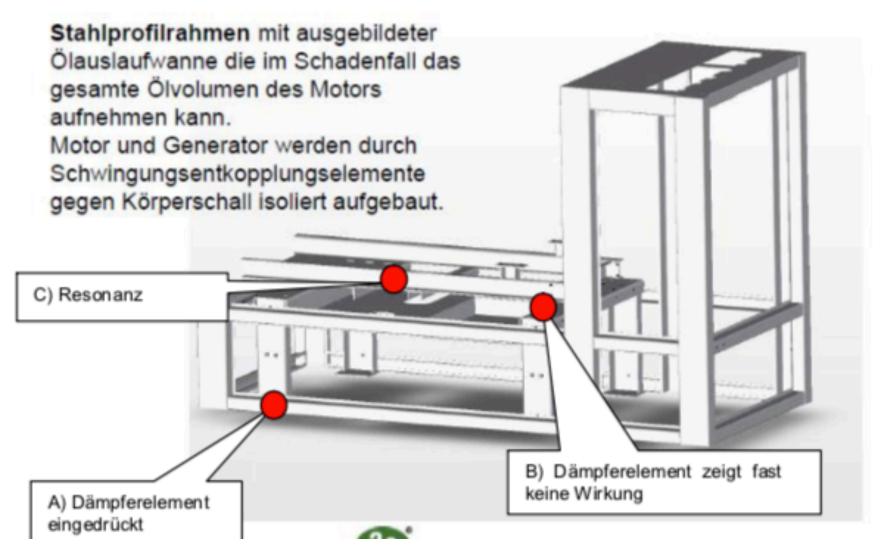
- Gaskühlung: zu stark, zu schwach, "Erdreich" versus Kühlaggregat
- Entwässerung, danach korrekte Feuchteeinstellung durch Nacherwärmung
- Wohlfühltemperatur und –Feuchte der Aktivkohle
- Temperatur- und Feuchteregelung, Kondensatbelastung der Aktivkohle, zu trockene Aktivkohle

5. Fundamentierung

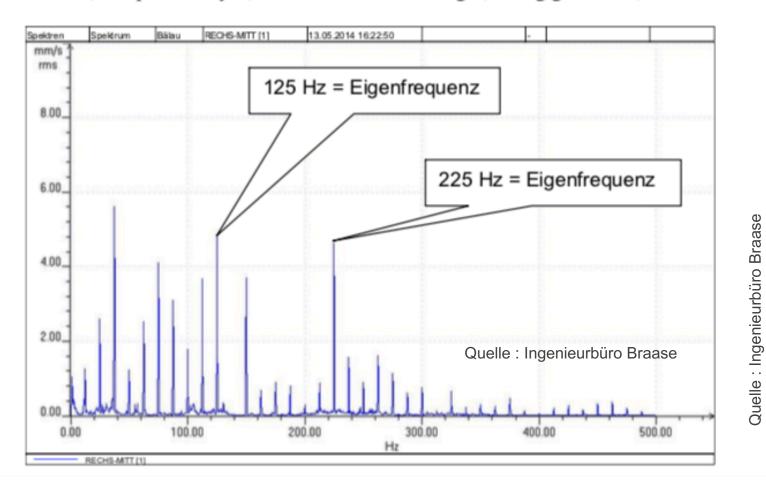
- Bodentragfähigkeit
- Maschinenfundament in Raumaufstellung: Entkopplung vom Fußboden und von Wänden
- Dämpfungslager Verschleißteil, bedarf der Einstellung
- Wasser- und Abgaskompensatoren : einachsiger Belastungszustand, keine Verspannung
- Schwingungsmessung nach Trennung Motor / Generator
- Statische und dynamische Fundamentauslegung
- Steifer Containerboden, Tragfähigkeit Containerdach


Quelle : Ingenieurbüro Braase

Dämpfer	Veff in mm/s vor der Lagerung	Veff in mm/s nach der Lagerung
1L	14,2	3,2
<u>2L</u>	<u>12,5</u>	<u>6,0</u>
2L 3L 4L 5L 1R 2R	<u>8,9</u>	7,0, fast keine Wirkung.
<u>4L</u>	<u>7,6</u>	<u>4,0</u>
<u>5L</u>	<u>11,5</u>	<u>3,0</u>
<u>1R</u>	<u>15,4</u>	<u>2,9</u>
	<u>10,9</u>	<u>3,9</u>
<u>3R</u>	<u>4,0</u>	3,6, fast keine Wirkung
3R 4R 5R	<u>7,5</u>	<u>2,9</u>
<u>5R</u>	<u>11,6</u>	<u>3,2</u>


Ein Austausch der elastischen Lagerungen 3L und 3R sollte daher erfolgen.

Quelle : Ingenieurbüro Braase


Quelle : Ingenieurbüro Braase

Quelle: Ingenieurbüro Braase

Es wurden vertikale Eigenfrequenzen am Stahlrahmen von 125 Hz, 225 Hz, 770 Hz, 943 Hz durch Stoßanregung festgestellt. Diese wurden dann auch angeregt beim Betrieb. Siehe das nachfolgende Bild. Es liegen hier somit Resonanzen mit der Stahlkonstruktion vor. Die Verbindungsschrauben sollten hier kontrolliert werden. Wenn hier keine Beanstandung festzustellen ist, sollte eine Nachrechnung des Stahlrahmens hinsichtlich der Struktureigenfrequenzen erfolgen um diese möglicherweise zu versteifen. Siehe Bild 02, Punkt C.

Bild 04, Frequenzanalyse, rechter oberer Stahlträger, mittig gemessen, vertikal

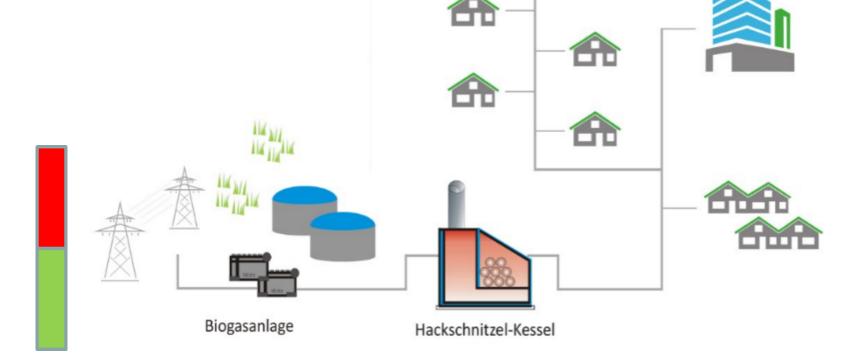
Hersteller hat die Gestell-Konstruktion verbessert:

Steifere Gestellprofile, verschweißt statt verschraubt

Auf die Gewichtsverteilung des Gensets abgestimmte Dämpfungselemente

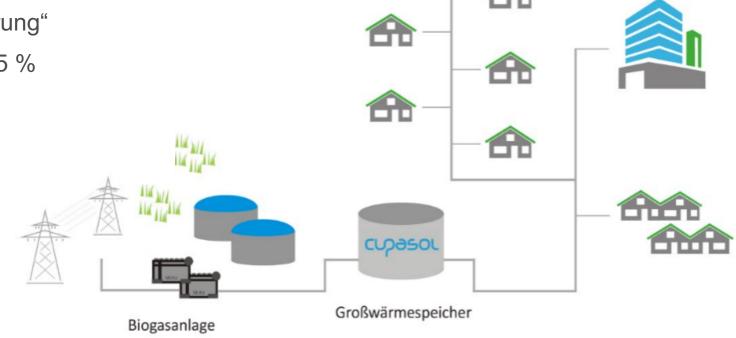
Bestehende Aufgabe: Erregerfrequenzen des Motors reduzieren

IG Biogasmotoren 👅


6. Gasgebläse

- Einhausung, Schutz vor Witterung und Überhitzung
- Rohrführung und Kondensatabscheidung
- Regelmäßige Dichtheitsprüfung
- Reserveaggregat vor Ort oder beim Servicepartner
- Elektrische Verkabelung Ex-geschützt

7. Abwärmeführung (Versorgung der Wärmeabnehmer, Modifikation von Nahwärmenetzen)


- Aufbau und Modifikation von Wärmenetzen: Wärmeplaner notwendig, auch beim Speichereinsatz
- Einfache Hydraulik anstreben, keine gegeneinander laufende Pumpen einsetzen
- Dynamik der Wärmelast berücksichtigen, Rücklaufanhebung auf der Primärseite des Heizwärmetauschers vorsehen
- Dimensionierung von Leitungsquerschnitten, Pumpen und Wärmetauschern: geringe Energiekosten und optimale Wärmeübertragung nur mit seriösen Eckdaten für Verschmutzung, Außentemperaturen, Lastprofilen

- Hohe Investitionskosten
- Hohe Personalkosten
- Hohe verbrauchs- und betriebs-Kosten
- Wärmenutzung häufig 50 %
- Mittlere Erlöse aus Wärmeverkauf

gebundene

- Hohe Investitionskosten
- Geringe verbrauchs- und betriebs-
- gebundene Kosten
- Wärmenutzung 65 % 75%
- Hohe Erlöse aus Wärmeverkauf
- Mit "saisonaler Fütterung"
- Wärmenutzung bis 95 %

Vergleichsvariante	BHKW + Hackschnitzelkessel	BHKW + Wärmespeicher	BHKW saisonal + Wärmespeicher
Anzahl der Verbraucher	95 HH	95 HH	135 HH
el. Leistung BHKW	500 kW	500 kW	700 kW
Wärmeverbrauch HH	2.420 MWh/a	2.420 MWh/a	3.425 MWh/a
ans Netz abgegebene Energie	3.020 MWh/a	3.120 MWh/a	4.350 MWh/a
Energie aus Hackschnitzel	540 MWh/a	o MWh/a	o MWh/a
Energiebereitstellung aus BHKW	2.480 MWh/a	3.120 MWh/a	4.350 MWh/a
Jahres-Wärmemenge BHKW	4.250 MWh/a	4.250 MWh/a	4.480 MWh/a
Wärme-Nutzungsquote BHKW	58%	73%	97%

Vergleichsvariante	BHKW + Hackschnitzelkessel	BHKW + Wärmespeicher	BHKW saisonal + Wärmespeicher
Investition Heizhaus / Wärmespeic	her 426,0 TEUR	577,0 TEUR	577,0 TEUR
kapitalgebundene Kosten	27,3 TEUR	36,9 TEUR	36,9 TEUR
betriebsgebundene Kosten / Jahr	30,0 TEUR	5,0 TEUR	5,0 TEUR
verbrauchsgebundene Kosten / Jah	r 20,3 TEUR	0,0 TEUR	0,0 TEUR
Ausgaben	77,5 TEUR	41,9 TEUR	41,9 TEUR
Wärmeerlös 2,5ct/kWh	75,5 TEUR	78,0 TEUR	108,8 TEUR
KWK Bonus	74,4 TEUR	93,6 TEUR	130,5 TEUR
Einnahmen	149,9 TEUR	171,6 TEUR	239,3 TEUR
Gewinn vor Steuern	72,4 TEUR	129,7 TEUR	197,3 TEUR
Differenz	0,0 TEUR	57,3 TEUR	124,9 TEUR

8. Mess- und Steuerungstechnik, Sicherheitstechnik

- Gasqualität
- Gasaufbereitung: Gaskühlung, Nacherwärmung
- Messgeräte
- Pumpstation
- Rührwerke, Feststoffzuführung
- Waage
- Wärmenetz
- Notfackel

- Wasseraufbereitung
- Power to Heat
- Direktvermarktung
- Netzanschluss
- Netzregelung entsprechend BDEW MR
- Alarmierung
- Hilfsantriebesteuerung
- Motorsteuerung

8. Mess- und Steuerungstechnik, Sicherheitstechnik

- Mit der Anlagenlaufzeit: Umbau, Erneuerung, Erweiterung
- Wachsender Wartungs- und Prüfaufwand
- Dokumentation der Anlagenteile (Altanlagen mit nicht mehr greifbaren Herstellern)
- Integration in den Alltag der technischen Betriebsführung

8. Mess- und Steuerungstechnik, Sicherheitstechnik

8.2 Consulting AG:

"Motorschutzschalter werden nicht richtig eingestellt

Folgen:

Der Antrieb wird zu warm:

- Alterung
- Kurzschluss
- Brandgefahr
- Ausfall der Anlage"

Quelle: 8.2 Consulting AG

8. Mess- und Steuerungstechnik, Sicherheitstechnik

8.2 Consulting AG:

"Erdung / Potentialausgleich sind nicht einwandfrei, z.B. korrodiert.

Folgen:

- Störungen in der MSR Technik
- Defekte Sensoren
- Fehler in der Datenübertragung
- Vagabundierende Ströme
- Ex- Anforderung nicht erfüllt
- Sensor wird zerstört"

Quelle: 8.2 Consulting AG

8. Mess- und Steuerungstechnik, Sicherheitstechnik

8.2 Consulting AG

"Vergütungsrelevant: > 50% aller Schutzeinstellungen waren falsch bei der Konformitätsprüfungbei einer Nachprüfung durch einen Netzbetreiber

Folgen:

- Verlust der Vergütung,
- Nachweisführung, wann waren die Einstellungen ok.

Maßnahmen:

- regelmäßige Prüfung der Einstellungen, alle vier Jahre
- Funktion pr
 üfen nach Arbeiten an der Regelungstechnik (z.B. Software-Updates!)

Quelle: 8.2 Consulting AG